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Deep	Learning	and	Radio	Frequency	(RF)	Systems
Deep	Learning	is	Emerging

• Intrusion	Detection
• Threat	classification
• Facial	recognition
• Imagery	analysis

• Tumor	Detection
• Medical	data	analysis
• Diagnosis
• Drug	discovery

• Pedestrian	/	obstacle	
detection

• Navigation
• Street	sign	reading
• Speech	recognition

• Image	classification
• Speech	recognition
• Language	translation
• Document	/	database	
searching

Cyber Medicine Autonomy Internet

Deep	learning	technology	enabled	and	accelerated	by	GPU	processors	
-Has	yet	to	impact	design	and	applications	in	wireless	and	radio	frequency	systems
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Radio	Frequency	Technology	is	Pervasive

Enabled	by	low-cost,	highly	capable	general	
purpose	graphics	processing	units	(GPUs)
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AI	will	increase	wireless	system	reliability	and	security	while	simultaneously	
reducing	human	capital	and	cost

Why	Use	AI	in	Wireless	Technology
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Reduce	Human
Capital

with	AI	analytics

Increase	Platform
Reliability

with	reduced	down-time

Increase	Cyber	
Security

with	wireless	network	monitoring
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Why	Has	It	Not	Been	Addressed

• AI	requires	large	data	sets
• Insufficient	bandwidth	to	
send	to	remote	data	center

• No	RF	systems	exist	with	
integrated	AI	
computational	processors

• Disjointed	software
• Difficult	to	program	and	
understand
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Bandwidth	
Limitations

Limited	Compute	
Resources

Complicated	
Software

remote	processing	not	possible at	field	site for	RF	and	AI	independently
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Datalink	Bandwidth	Limitations

• Raw	RF	signal	must	be	digitized	to	
apply	deep	learning

• Nyquist	says	two	samples	per	Hertz	
required	to	reconstruct	the	signal

• Each	sample	is	16	bits	(unpacked)

• Sending	raw	digital	signal	to	remote	
data	center	is	unfeasible

• Datalinks	and	fiber	optic	connections	
already	primary	resources	for	signal’s	
data	content

• Remote	locations	have	limited	
connectivity

• Reasonable	solution	is	to	move	the	
computational	engine	to	the	edge
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Frequency	Band
Bandwidth	
(MHz)

Data	Rate	
(Mbps)

FM	Radio	(1	channel) 0.2 6

FM	Radio	(all	channels) 20 640

ISM	(915) 26 832

ISM	(2.4) 100 3,200

Automotive	Radar	(64) 500 16,000
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Our	Solution	and	Platform
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Artificial	Intelligence	
Radio	Transceiver

Approach	- Enable	the	wide	adoption	of	AI	within	wireless	
technology	with	our	integrated	hardware	and	software	platform

Hardware	for	Real-world	Applications Easy	to	Program	Software
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RF	and	Wireless	Hardware

Machine	
Learning

Signal	
Processing

Industry	Leading	
Software	Tools

Hardware	Controls

Simplification	Layer

User	
Developed	
Applications

Deepwave	
IP	Cores
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Outline

• Introduction
• Deep	Learning	in	RF	Systems
• Deepwave	Digital	Technology
• Example	Signal	Detection	and	Classification
• Training	and	Inference	of	Classifier
• Deploying	a	Deep	Learning	RF	Systems
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Deep	Learning	Comparison

• Multiple	channels	(RGB)
• x,	y	spatial	dependence
• Temporal	dependence	(video)

• Single	channel
• Frequency,	phase,	amplitude
• Temporal	dependence

• Multiple	channels
• Frequency,	phase,	amplitude
• Temporal	dependence
• Human	engineered
• Complex	data	(I/Q)
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Image	and	Video Audio	and	Language Systems	and	Signals

Existing	deep	learning	potentially	adaptable	to	systems	and	signals
• Must	contend	with	complex	data	types
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• Advanced	modulation	techniques
• Adaptive	waveforms
• Encryption	and	security

• Voice	/	image	recognition
• Multi-sensor	fusion
• Decision	making	and	data	reduction

• Spectrum	monitoring	(threats)
• Intelligent	spectrum	usage
• Electronic	protection	(anti-jam)
• Cognitive	system	control

Usages	for	Deep	Learning

Intelligent	Radio	Frequency	(IRF)	Systems
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Modulate1 0 1 1 0 0 1 0 1 0

User	
Application
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User	
Application
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Frequency	
Convert

1 0 1 1 0 0 1 0 1 0Demodulate
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Deep	Learning	Processors	for	RF	Systems:	Training

Pros Cons

CPU • Supported	by	frameworks • Slower	than	GPU
• Fewer	software	architectures

GPU
• Most	utilized
• Highly	parallel	and	adaptable
• Good	throughput	vs.	power	req.

• Overall	power	consumption

FPGA Not	widely	utilized,	not	well	suited	(yet)

ASIC Not	widely	utilized	or	well	suited
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Deep	Learning	Processors	for	RF	Systems:	Inference

Pros Cons

CPU
• Adaptable	architecture
• Software	programmable
• Widely	utilized	in	software	defined	radios

• Low	parallelism
• Medium	power	requirements

GPU
• Adaptable	architecture
• High	throughput
• Software	programmable

• Medium	to	high	power	requirements
• Not	well	integrated	into	RF	systems

FPGA • Power	efficient
• Somewhat	reprogrammable

• Long	development	time
• Specialty	expertise	required

ASIC • Extremely	power	efficient
• Highly	reliable

• Not	adaptable
• Long	development	time
• Specialty	expertise	required
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Outline

• Introduction
• Deep	Learning	in	RF	Systems
• Deepwave	Digital	Technology
• Example	Signal	Detection	and	Classification
• Training	and	Inference	of	Classifier
• Deploying	a	Deep	Learning	RF	Systems
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Artificial	Intelligence	Radio	Transceiver	(AIR-T)

•Dual	Channel	Transceiver
•300	MHz	to	6	GHz
•100	MHz	bandwidth	per	Rx	channel
•250	MHz	bandwidth	per	Tx	channel

•Digital	Signal	/	Deep	Learning	Processors
•Xilinx	Artix	7	FPGA
•ARM	Cortex-A57	(quad-core)
•Denver2	(dual	core)
•Nvidia	Pascal	256	Core	GPU
• Shared	CPU/CPU	memory

•Connectivity
•1	PPS	/	10	MHz	for	GPS	Synchronization
•HDMI,	USB	2.0/3.0,	SATA
•Ethernet,	WiFi,	Bluetooth

•Dual	Power	Mode	(22	/	14W)

AIR-T Specifications

Micro	ITX	Form	Factor

Artistic	rendering.	Exact	design	may	slightly	differ
13
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Simplified	Programming

Deep
Learning

Digital	
Signal	

Processing

VHDL, Verilog
or

Custom	Software
or

TensorRT
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GNU	Radio	– Software	Defined	Radio	(SDR)	Framework

• Popular	open	source	SDR	toolkit:
• RF	Hardware	optional
• Can	run	full	software	simulations

• Python	API
• C++	under	the	hood

• Easily	create	DSP	algorithms	
• Custom	user	blocks

• Primarily	uses	CPU
• Advanced	parallel	instructions
• Recent	development:	RFNoC for	FPGA	
processing

• Deepwave	working	on	integrating	GPU	
support	for	both	DSP	and	ML

15
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AIR-T	Initial	Performance	Testing
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RF	Data	Source

GPU	/	ARM	
Shared	Memory

cuFFT

PCIe

Tegra TX2	System	on	Module*

Complex	int16	to	
complex	float32

GPU	/	ARM	
Shared	Memory

Intel 7500U

*	GNU	Radio	excluded	from	cuFFT benchmark
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Current	GNU	Radio	Limitations	for	GPU	Processing

• GNU	Radio	handles	memory	management
• Cannot	currently	tell	it	about	existing	memory	buffers
• Must	allocate	special	CUDA	memory	(even	on	Jetson	TX2)
• Requires	memcpy()	each	time	GNU	Radio	block	operates

• Extra	copy	each	direction

• GNU	Radio	has	open	feature	request	to	support	
custom	buffer	allocators*

• Deepwave	willing	to	collaborate	with	GNU	Radio	open	
source	project	to	advance	issue

17

*	Issue	#950	on	Github
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Inference	using	GNU	Radio	and	TensorRT

• TensorRT chosen	as	initial	inference	
library	for	AIR-T

• Optimized	inference	for	Nvidia	based	
hardware

• Significant	speedups	over	TensorFlow	
on	Jetson	TX2	for	image	processing

• Native	support	for:	
• TensorFlow,	Caffe,	other	frameworks

• Deepwave	working	on	GNU	Radio	
OOT	Module	(gr-trt)	to	execute	
TensorRT inference	within	GNU	Radio
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Outline

• Introduction
• Deep	Learning	in	RF	Systems
• Deepwave	Digital	Technology
• Example	Signal	Detection	and	Classification
• Training	and	Inference	of	Classifier
• Deploying	a	Deep	Learning	RF	Systems
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Multi-transmitter	Environmental	Scenario

Onboard	receiver	detects	and	classifies	
signals	using	on	deep	learning	

20
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Radar	Signal	Detector	Model:	Transmitted	Signals

Radar	Waveform

Linear	Pulse X X X X X X
Non-Linear	Pulse X X X

Phase	Coded	Pulse X
Pulsed	Doppler X X X

21

Transmitter
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Radar	Signal	Detector	Model:	Propagation

Data	Set	Generation:
• Random	phase	shift	applied	to	each	
signal	segment

• Signal	frequency	changes	between	
coherent	processing	intervals

• Transmitter	range	modeled	as	
received	signal	to	noise	radios

22

Signal	
Propagation
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Radar	Signal	Detector	Model:	Received	Signal

• RF	Receiver	system:
• 65	dB	gain
• 5	dB	noise	figure
• 14	ADC	bits
• 25	MHz	bandwidth

• Hilbert	Transformer	receiver
• Complex	sample	data

23

RF	Receiver

Pulsed
Doppler

Phase	Code	
(Frank)

Non-Linear	
Frequency	
Modulation
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Radar	Signal	Detector	Model:	Receiver

24

• 5	dB	Noise	Figure
• 65	dB	System	Gain
• 14	Bits	ADC

RF	Receiver

Band	Pass	
Filter 90o

Low	Pass	
Filter

Low	Pass	
Filter

ADC

ADC

AMP

Antenna In-Phase	(Real)

Quadrature	(Complex)
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Radar	Signal	Detector	Model:	Example	Classifier
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Deep	Learning	
Detector	/	Classifier
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Outline

• Introduction
• Deep	Learning	in	RF	Systems
• Deepwave	Digital	Technology
• Example	Signal	Detection	and	Classification
• Training	and	Inference	of	Classifier
• Deploying	a	Deep	Learning	RF	Systems
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Dataset	Overview

• Goal:	Develop	a	deep	learning	
classifier	that	detects	signals	below	
noise	floor

• Requires	training	on	noisy	data

• Swept	SNR	from	-35	dB	to	20	dB	in	1	
dB	increments

• 1000	training	segments	per	SNR
• 500	inference	segments	per	SNR

• Used	MATLAB	to	create	data
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Training	Process	and	Progress

• 1000	training	segments	per	SNR
• 55	different	SNR	values

• Training	on	low	SNR	values	increase	
detection	sensitivity

• 100%	accuracy	not	expected	due	to	
training	at	extremely	low	SNR	values

• Softmax cross	entropy
• Adam	Optimizer

28

Deep	Learning	Classifier	Training
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Detecting	and	Classifying	Low	Power	Signals

29
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Receiver	Operating	Characteristic	(ROC)	Curve

30

Probability	of	Correct	Classification	for	
Various	Radars

Why	is	
PCC	not	
zero?

Signal-to-
Noise	Ratio	

(dB)

Receiver	Noise	
Power	

(milliwatts)

Received	Signal	
Power	

(milliwatts)
20 1 100
10 1 10
0 1 1
-10 1 0.1
-20 1 0.01
-30 1 0.001

Decibel	(dB)	Refresher
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Receiver	Operating	Characteristic	(ROC)	Curve

31

Confusion	Matrix	(-35	dB	SNR)

Surveillance

Ground	(LFM1)

Ground	(LFM2)

MTI

Airborne	(Med	PRF)

Airborne	(High	PRF)

Ground	(Frank	Code)

Nautical	(Short	Range)

Nautical	(Long	Range)

Nautical	(Long	Range)

Ground	(NLFM1)

Ground	(NLFM2)

Ground	(NLFM3)

Interference

Nothing

Tr
ut
h

0.20

0.16

0.12

0.08

0.04

0.00

Prediction

Why	is	
PCC	not	
zero?

Probability	of	Correct	Classification	for	
Various	Radars
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Measuring	Probability	of	False	Alarm

32

False	Alarms	(Noise	Source)
Total	PFA	=	0.41Noise	Source

Classifier

Something	or	
Nothing?

CNN

Something
False	Alarm	

(False	Positive)
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Confusion	Matrix	and	Signal	to	Noise	Ratio

33

Significant	false	alarm	rate	limits	algorithm’s	applicability	and	creates	non-
zero	probability	of	correct	classification	(PCC)	at	low	SNR	values
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Deepwave	Training	Method	to	Reduce	False	Alarms
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Probability	of	Correct	Classification	for	Various	RadarsFalse	Alarms	(Noise	Only)

Total	PFA	=	10-4

• Method	makes	probability	of	false	alarm	
a	training	hyperparameter

• Example	shows	false	alarm	rate	reduced	
from	41%	to	0.01%
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New	Inference	Confusion	Matrix
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Deepwave	training	algorithms	allows	for	tunability	of	false	alarm	rate
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Deepwave	Method	to	Reduce	False	Alarms
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False	Alarm	Probability
Reduced	to	0.01	%

Probability
of	Detecting	and	
Classifying	Signal

Probability	of	
False	Alarm	

(False	Positive)

Total	False	Alarm	Probability	=	41%

Signal	Types Signal	Types

Apply	Deepwave’s
False	Alarm	

Learning	Algorithm

False	alarm	conscious	training	method	has	<	5dB	impact	on	detector	sensitivity

Deepwave’s	Training	AlgorithmTrained	Neural	Network
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Outline

• Introduction
• Deep	Learning	in	RF	Systems
• Deepwave	Digital	Technology
• Example	Signal	Detection	and	Classification
• Training	and	Inference	of	Classifier
• Deploying	a	Deep	Learning	RF	Systems
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Creating	Inference	Engine	for	GNU	Radio

38

l Yesterday’s announcement of TensorRT
support in native TensorFlow is not included

l TensorRT Python API not supported on ARM
- Some C++ required to build and run inference
- Several steps can still be performed in Python, 

but on an x86 machine

l Inference performance tied to TensorRT
kernel selection and optimization
- RF case is somewhat unique (i.e., we’re not 

processing images)
l Unique network shape
l Possible that optimizations have yet to be applied

l GNU Radio does not support float16

Build	and	Train	
TensorFlow	
Model

Freeze	&	
Optimize

Build	TensorRT
Engine

GNU	Radio	or	
Deployment	

App

Python	on	x86

C++	on	AIR-T

Convert	to	
Universal	
Framework	
Format	(UFF)

Implementation	Caveats



28	March	2018

Creating	Inference	Engine	for	GNU	Radio
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Build	and	Train	
TensorFlow	
Model

Freeze	&	
Optimize

Build	TensorRT
Engine

GNU	Radio	or	
Deployment	

App

Python	on	x86

C++	on	AIR-T

Convert	to	
Universal	
Framework	
Format	(UFF)

Freeze	and	Optimize	Trained	Model
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Build	and	Train	
TensorFlow	
Model

Freeze	&	
Optimize

Build	TensorRT
Engine

GNU	Radio	or	
Deployment	

App

Python	on	x86

C++	on	AIR-T

Convert	to	
Universal	
Framework	
Format	(UFF)

Creating	Inference	Engine	for	GNU	Radio
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Convert	to	UFF
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Build	and	Train	
TensorFlow	
Model

Freeze	&	
Optimize

Build	TensorRT
Engine

GNU	Radio	or	
Deployment	

App

Python	on	x86

C++	on	AIR-T

Convert	to	
Universal	
Framework	
Format	(UFF)

Creating	Inference	Engine	for	GNU	Radio
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Build	TensorRT Engine
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Build	and	Train	
TensorFlow	
Model

Freeze	&	
Optimize

Build	TensorRT
Engine

GNU	Radio	or	
Deployment	

App

Python	on	x86

C++	on	AIR-T

Convert	to	
Universal	
Framework	
Format	(UFF)

Creating	Inference	Engine	for	GNU	Radio

42

Execute	Inference	Engine	with	GNU	Radio
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AIR-T	Availability	and	Pricing

• Presales:	Beginning	April,	2018
• 10%	discount	on	all	pre-orders

• Anticipated	Ship	Date:	September	2018

• Early	product	testing	available	for	
select	institutions:

• Government	and	FFRDC	labs
• Currently	looking	for	telecommunications	
partners

43

Contact us at sales@deepwavedigital.com

Exact	specifications	may	slightly	differ	from	drawing



28	March	2018

44




