

DEEPWAVE DIGITAL

Deep Learning and Radio Frequency (RF) Systems

Deep Learning is Emerging

- Intrusion Detection
- Threat classification
- Facial recognition
- Imagery analysis

- Tumor Detection
- Medical data analysis
- Diagnosis
- Drug discovery

- Pedestrian / obstacle detection
- Navigation
- Street sign reading
- Speech recognition

- Image classification
- Speech recognition
- Language translation
- Document / database searching

Enabled by low-cost, highly capable general purpose graphics processing units (GPUs)

Radio Frequency Technology is Pervasive

Deep learning technology enabled and accelerated by GPU processors

- Has yet to impact design and applications in wireless and radio frequency systems

Intelligent Radio Frequency (IRF) Systems

Why Has It Not Been Addressed

Bandwidth Limitations

remote processing not possible

- Al requires large data sets
- Insufficient bandwidth to send to remote data center

Limited Compute Resources

at field site

 No RF systems exist with integrated AI computational processors

Complicated Software

for RF and AI independently

- Disjointed software
- Difficult to program and understand

Our Solution and Platform

Approach - Enable the wide adoption of AI within wireless technology with our integrated hardware and software platform

Hardware for Real-world Applications

Easy to Program Software

Outline

Introduction

- Deep Learning in RF Systems
- Deepwave Digital Technology
- Example Signal Detection and Classification
- Real-time Signal Processing Benchmarks for GPUs
- Summary

Deep Learning Comparison

Image and Video

- Multiple channels (RGB)
- x, y spatial dependence
- Temporal dependence (video)

Audio and Language

- Single channel
- Frequency, phase, amplitude
- Temporal dependence

Systems and Signals

- Multiple channels
- Frequency, phase, amplitude
- Temporal dependence
- Complex data (I/Q)
- Large Bandwidths
- Human engineered

Existing deep learning potentially adaptable to systems and signals

Must contend with wideband signals and complex data types

Hardware for Deep Learning in RF Systems

	Training		Inference	
	Pros	Cons	Pros	Cons
CPU	Supported by ML FrameworksLower power consumption	Slower than GPUFewer software architectures	Adaptable architectureSoftware programmableMedium latency	Low parallelismLimited real-time bandwidthMedium power requirements
GPU	 Supported by ML Frameworks Widely utilized Highly parallel / adaptable Good throughput vs power 	Overall power consumptionRequires highly parallel algorithms	Adaptable architectureHigh real-time bandwidthSoftware programmable	Medium power requirementsNot well integrated into RFHigher latency
FPGA	Not widely utilized, not well suited (yet)		High power efficiencyHigh real-time bandwidthLow latency	Long development / upgradesLimited reprogrammabilityRequires special expertise
ASIC	Not widely utilized, not well suited		Extremely power efficientHigh real-time bandwidthHighly reliableLow latency	Extremely expensiveLong development timeNo reprogrammabilityRequires special expertise

Critical Performance Parameters for Deep Learning in RF Systems

GPU signal processing can provide wideband capability and software upgradability at lower cost and development time

- Must contend with increased latency (~2 microsecond)

Outline

- Introduction
- Deep Learning in RF Systems

- Deepwave Digital Technology
- Example Signal Detection and Classification
- Real-time Signal Processing Benchmarks for GPUs
- Summary

Artificial Intelligence Radio Transceiver (AIR-T)

Hardware Specifications

2x2 MIMO Transceiver

- Analog Devices 9371 chip
- Tunable from 300 MHz to 6 GHz
- 100 MHz bandwidth per channel

Digital Signal / Deep Learning Processors

- Xilinx Artix 7 FPGA
- NVIDIA Jetson TX2
 - ARM Cortex-A57 (quad-core)
 - Denver2 (dual core)
 - Nvidia Pascal 256 Core GPU
 - Shared GPU/CPU memory

Connectivity

- 1 PPS / 10 MHz for GPS Synchronization
- External LO input
- HDMI, USB 2.0/3.0, SATA, Ethernet, SD Card, GPIO

Simplified Programming

Deep Learning

Digital
Signal
Processing

VHDL, Verilog

Custom Software

GNU Radio – Software Defined Radio (SDR) Framework

- Popular open source software defined radio (SDR) toolkit:
 - RF Hardware optional
 - Can run full software simulations
- Python API
 - C++ under the hood
- Easily create DSP algorithms
 - Custom user blocks
- Primarily uses CPU
 - Advanced parallel instructions
 - Recent development: RFNoC for FPGA processing
- Deepwave is integrating GPU support for both DSP and ML

GR-Wavelearner

- Out of tree (OOT) module for GNU Radio
- Allows users to easily incorporate deep learning into signal processing
- C++ and Python API
- Open source GPLv3 license
- Two blocks currently:
 - Inference TensorRT wrapper for GNU Radio
 - <u>Terminal Sink</u> Python module for displaying classifier output

Deepwave's Training to Deployment Workflow

- Workflow utilizes TensorRT for deployment
- Allows for training on wide array of frameworks

^{*} Deep Neural Network

Deepwave's Training to Deployment Workflow

TensorFlow Example

Step 1: Freeze graph (make variables constants)

Step 2: Convert DNN model to UFF File

Step 3: Convert UFF File to PLAN File

Note: This step must be completed on deployment architecture

Caveats

- Not all layers are supported, but most common ones are
- PLAN file must be created on deployment architecture
 - Python conversion not available on ARM (Jetson)
 - Limited transferability of PLAN files

^{*} Deep Neural Network

Deepwave's Training to Deployment Workflow

GNU Radio Companion GUI

Python API (Real time DNN* RF system in 35 lines of code!)

```
from gnuradio import blocks
from gnuradio import gr
import wavelearner
class ClassifierTest(gr.top block):
        gr.top block. init (self)
        # Define signal processing functions
                          = blocks.file source(gr.sizeof short, inputdata, False)
                         = blocks.throttle(gr.sizeof short, fs, True)
        self.type convert = blocks.short to float(1, norm)
                         = blocks.stream to vector(gr.sizeof float, nbatch*nin)
        self.inference = wavelearner.inference(planfile, nin*nbatch, nout*nbatch, nbatch)
        self.terminal out = wavelearner.terminal sink(nout * nbatch, nbatch)
        self.connect((self.throttle, 0), (self.type convert, 0))
        self.connect((self.buffer, 0), (self.inference, 0))
        self.connect((self.inference, 0), (self.terminal out, 0))
inputdata = '/path/to/classifier test.dat'
planfile = '/path/to/classifier test.plan
         = 100e6
         = 4096
norm
          = ClassifierTest()
tb.start()
tb.wait()
```

GR-Wavelearner Available Now on GitHub

- Goal is to help the open source community easily deploy deep learning within signal processing applications
- Looking for the community to use module and provide feedback
- Well documented README with dependency installation instructions to get started quickly
 - Ubuntu 16.04 recommended, Windows 10 supported
 - Tested with NVIDA Docker Container 18.08*
- Signal classifier example provided:
 - GNU Radio Flowgraph
 - Python source code
 - PLAN files that are executable on the AIR-T and GTX 950M
 - Signal data file example for testing
- Just added support for TensorRT 5.0

https://docs.nvidia.com/deeplearning/sdk/tensorrt-container-release-notes/rel 18.08.html

Outline

- Introduction
- Deep Learning in RF Systems
- Deepwave Digital Technology

- Example Signal Detection and Classification
- Real-time Signal Processing Benchmarks for GPUs
- Summary

Multi-transmitter Environmental Scenario

Radar Signal Detector Model: Transmitted Signals

Technique demonstration shown with nominal radar signals

• Method applicable to communications, cellular, and other RF protocols

Dataset Overview

- Goal: Develop a deep learning classifier that detects signals below noise floor
 - Requires training on noisy data with and without interference
- Swept SNIR from -35 dB to 20 dB in 1 dB increments
 - 1000 training segments per SNIR
 - 500 inference segments per SNIR
 - Up to 3 interferers in each segment

Radar Signal Detector Model: Example Classifier

Training Process and Progress

- 1000 training segments per SNR
 - 55 different SNR values
- Training on low SNR values increase detection sensitivity
- 100% accuracy not expected due to training at extremely low SNR values
- Softmax cross entropy
- Adam Optimizer

Detecting and Classifying Low Power Signals

Detecting and Classifying Low Power Signals

Probability of Correct Classification for Radar Signal on Previous Slide

Decibel (dB) Refresher

Signal-to- Noise Ratio (dB)	Receiver Noise Power (milliwatts)	Received Signal Power (milliwatts)
20	1	100
10	1	10
0	1	1
-10	1	0.1
-20	1	0.01
-30	1	0.001

Probability of Correct Classification for All Radars

Decibel (dB) Refresher

Signal-to- Noise Ratio (dB)	Receiver Noise Power (milliwatts)	Received Signal Power (milliwatts)
20	1	100
10	1	10
0	1	1
-10	1	0.1
-20	1	0.01
-30	1	0.001

Probability of Correct Classification for All Radars

Decibel (dB) Refresher

Signal-to- Noise Ratio (dB)	Receiver Noise Power (milliwatts)	Received Signal Power (milliwatts)
20	1	100
10	1	10
0	1	1
-10	1	0.1
-20	1	0.01
-30	1	0.001

Probability of Correct Classification for Various Radars

DNN appears to be randomly guessing at low SNR which will create unnecessary requirements on downstream processing

Confusion Matrix (-35 dB SNR)

Methodology for Testing False Positive Rate

Confusion Matrix and Signal to Noise Ratio

Significant false alarm rate limits algorithm's applicability and creates non-zero probability of correct classification (PCC) at low SNR values

Deepwave Training Method to Reduce False Alarms

False Alarms (Noise Only)

Probability of Correct Classification for Various Radars

New Inference Confusion Matrix

Deepwave training algorithms allows for tunability of false alarm rate

Deepwave Method to Reduce False Alarms

Probability of Detecting and Classifying Signal

Probability of False Alarm (False Positive)

Apply Deepwave's
False Alarm
Learning Algorithm

False alarm conscious training method has < 5dB impact on detector sensitivity

Outline

- Introduction
- Deep Learning in RF Systems
- Deepwave Digital Technology
- Example Signal Detection and Classification

- Real-time Signal Processing Benchmarks for GPUs
- Summary

Critical Performance Parameters

- What makes a DNN model "good?"
 - **High Sensitivity** detects low powered signals
 - Low false alarm rate minimize false positives
 - High real time bandwidth
 - Low computational requirements
 - Low latency
- Most of these critical performance parameters are adversarial

Model Tuning Variables

	Min Val	Max Val	Total
CNN Stride	1	16	9
Number of Filters	4	256	7
Classifier Layer 1 Width	64	128	3
Classifier Layer 2 Width	32	64	3
Classifier Layer 3 Width	0	64	2
Batch Size	1	256	8
Total Model Combinations Tested			728

- 1000 training segments per SNR
 - 55 different SNR values
- Softmax cross entropy
- Adam Optimizer
- Quadro GP100 GPU
- Create UFF File for each model

- Compute receiver operating characteristic (ROC) curve for each model
- Define sensitivity to be where median PCC = 50% for all signal types

- Create TensorRT PLAN file for each platform tested
- Load signal data into RAM
- Stream unthrottled data to gr-wavelearner

- Probe data rate at two locations:
 - 1. Aggregate data rate for entire process
 - Number of bytes processed / wall time
 - 2. Computation data rate in work() function
 - Number of bytes process / computation time

Data Rate Benchmark for AIR-T (Tegra TX2)

- Tested 91 different CNN classifier models
- Maximum real-time inference data rate for 8 different batch sizes
- Able to achieve 200 MSPS (real) with AIR-T

AIR-T

Data Rate Benchmark for AIR-T (Tegra TX2)

- Tested 91 different CNN classifier models
- Maximum real-time inference data rate for 8 different batch sizes
- Able to achieve 200 MSPS (real samples) with AIR-T

AIR-T

Data Rate Benchmark for Desktop (Quadro P100)

- Tested 91 different CNN classifier models
- Maximum real-time inference data rate for 8 different batch sizes
- Using unified memory will increase throughput

Desktop (GP100)

Wall Time vs. Compute Time for AIR-T

Real time data rate limited by GNU Radio overhead

Model Accuracy Benchmarks

Deepwave Inference Display

Summary

- Deep learning within signal processing is emerging
 - Algorithms may be applied to signal's data content or signal itself
- High bandwidth requirements driving edge solutions
- Deepwave developed AIR-T
 - Edge-compute inference engine with MIMO transceiver
 - FPGA, CPU, GPU
- Announced released of GR-Wavelearner
 - Open source inference engine for signal processing
 - Available now on our GitHub page

- Benchmarking analysis demonstrates AIR-T with GR-Wavelearner capable of signal classification inference at 200 MSPS real-time data rates
 - Improvements likely in future release

